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ABSTRACT

The physical characteristics of dense ammonium nitrate prills were 

examined. The density was found to be 1.52 grams per cubic centimeter, 

and from this the specific surface was calculated for the size fractions 

of interest in the investigatior\. Theoretical loading densities were 

calculated for between 26.0 and 47.6 percent voids.

The explosive properties of discrete particle size fractions were 

investigated. The equation by Clark was found to predict the detonation 

velocity of the sizes smaller than 8/20 mesh. The equation by Cook 

could not be applied to dense prilled ammonium nitrate. The possibility 

of a very oxygen negative condition existing with the largest prills 

was investigated.

Tests showed that dense prilled ammonium nitrate-fuel oil mixtures 

became more sensitive as their particle size decreased. The number of 

prills contacting the primer was found to be approximately a constant 

for the particle size ranges investigated. This was attributed to the 

effect of "hot-spots" on initiation of detonation.
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CHAPTER I 

INTRODUCTION

Ammonium nitrate has long been used as a component of explosives.

In World War I it reached its first major utilization other than in the 

ammonia dynamites, when it was brought into the war effort as the major 

component of "amatol" (Field, 1947)a In the mid 1930*s the first ammo­

nium nitrate—fuel came into use as packaged Du Pont "Nitramon" (Maxon, 

1935). Since the Second World War events occurred which changed the 

explosives industry, and ammonium nitrate has become the most used ex­

plosive substance in the United States.

One major cause of the ammonium nitrate (generally abbreviated AN) 

revolution in blasting was the Second World War itself. Near the mid­

point of the war there arose a critical shortage of fixed nitrogen all 

over the world caused by the use of nitrogen compounds in explosives. As 

the demand diminished near the end of the war, American nitrogen plants 

were coming into production. The demand that then arose for fertilizer 

nitrogen, particularly in Europe, became so great that munitions-grade AN 

was made available to the fertilizer industry (Sauchelli, 1960). In the 

fiscal year ending June 30, 19^8, U.S. Army ordnance plants shipped 779,730 

tons of AN fertilizer to Germany, Japan, and Korea (Burns, et al, 1953).

The explosibility of AN had long been known, and was further brought 

to light in the disasters at Texas City, Texas; Brest, France; and the 

Black Sea. In fact, in the 40 years previous to 1955, there had been more 

than 25 major fires and explosions, involving 12,000 tons of AN and re­

sulting in death or injury to some 5,000 persons (Hainer, 1955). Thus, 

many groups began to look for a way to use this low-cost explosive energy



www.manaraa.com

2

to a greater extent in the commercial field*

In approximately 1947,, this material became more economical to pro­

duce by the advent of the prilling process which was then adapted to its 

manufacture* Even then, however, obstacles remained in the way of its use 

as a blasting agent* One of the major problems remaining was the fact 

that AN is extremely soluble in water, and up to that time most quarry 

drilling was done by the wet process of churn drilling* In this process, 

several feet of water are usually left in the bottom of a hole due to the 

usual design of the bailing device* The use of suitable dry rotary drills, 

introduced in the post-war years, therefore was another of the factors 

which entered into the major change in blasting which was to take place 

(Ammons, 1959)*

The first major use of AN as an explosive that was to be mixed at 

the blast property was by Lee and Akre in 1954 at the Maumee Collieries 

Co. in Indiana (Cooley, 1955)* Since in the molecule of AN there is an 

extra atom of oxygen over that necessary to produce the reaction products

N and H O some form of carbon must be added to achieve optimum results.z z
In the case mentioned, carbon black was used* The mixture was then sealed 

in a polyethylene bag* The reports of this commercial use created great 

excitement in the industry, but the mix still had some undesirable quali­

ties. These were primarily the low density of the large porous particles, 

and ̂ he difficulty in initiation of the mixture*

It was soon discovered, however, that the porous nature of the regu­

lar AN prill could be used to advantage* When a hydrocarbon in the liquid 

form, such as diesel fuel, was poured over the AN, a mixture resulted which 

was the proper combination to utilize the excess oxygen* This gave a free 

flowing, easily detonated blasting agent*
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Research was continued by users, manufacturers, and other interested 

scientific groups in an effort to solve the problems of low density and 

poor water resistance in a field mix, and also to increase the range of 

sensitivity and detonation velocity of the prill and oil mixture. Dur­

ing the intervening time the use of the AN-fuel mixes was growing at a 

fantastic rate, since the desirable qualities inherent in the mix far 

outweighed those that were undesirable.

A new prilled product, non-porous in nature and smaller in size than 

the regular AN prill, has recently been introduced to the fertilizer in­

dustry. The lack of pores, while increasing the density, adversely ef­

fects the intimacy of contact between the AN and fuel when used as a 

blasting agent. The present investigation was carried out in order to 

determine the explosive properties of various particle sizes of this new 

product«

A. SCOPE OF THE INVESTIGATION

1. Statement of the problem. While much is known of the detonation 

properties of regular prilled fertilizer grade AN, comparatively little is 

known of the characteristics of the dense prilled variety. This material, 

being of radically different physical character from regular porous prills, 

offers a new horizon in the AN—fuel field. The differences in character 

include greater sphericity, higher density, and a non-porous structure. 

Also, the dense prills lack the clay or other coating found on the indi­

vidual particles of regular porous prills. The problem, therefore, was 

to explore the sensitivity and detonation characteristics of various size 

fractions of dense prills, and attempt to relate these properties to some 

basic features of grain burning.
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2. Importance of the studya The ultimate in design of a dense prill­

ed AN-fuel mixture would be one in which a high density was achieved in 

combination with a reasonable order of sensitivity. This might be possi­

ble with a poiymodular mixture,, in which progressively smaller particles 

fill the Interstices among those which are larger„ The present investi­

gation was considered a necessary and important preliminary to the study 

of such designso A limitation was imposed because prill sizes in the 

general range of 50 to 1000 microns such as are required for this type of 

study are generally not those commonly manufactured in great quantity.

The present investigation was thus limited to a lesser number of tests 

than would normally have been desirable.
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CHAPTER II

A. CHARACTERISTICS OF AMMONIUM NITRATE

AN is the product of the reaction of ammonia and nitric acidc In the 

chemically pure state it occurs as colorless hygroscopic crystals which 

are relatively unstablen Some of the more important chemical characteris­

tics follows (Handbook, 1959; Taylor, Jtt, 1959; Stites, et_ al, 1960b)

Formulas NH_NO_4 3
Molecular weights 80o05

Crystal forms? 5 or 6 forms, depending on temperature and pres­

sure o The most important to this study are the forms III 

and IV, since with repeated cycling through the transition 

temperature between these forms (32„1°C) regular porous AN 

prills disintegrate0

Melting points 16906®C

Boiling points slowly decomposes between 200°C and 260°Co

Specific gravity? 10725 (form IV)

Solubility? 100 ml of water at 0°C will dissolve 118»3 gm of

AN; at 100°C it will dissolve 871 gnu AN is also very sol­

uble in alcohol, methyl alcohol, and ammoniaB It is insol­

uble in ethyl ether, and in both aliphatic and aromatic 

hydrocarbons «

Decomposition reactionss

i. n h4n o3 = + h n o 3
2 a NH4N03 = N20 + 2H20

REVIEW OF LITERATURE

(endothermic)
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3. 2NH4N03 = 2N2 + 4H20 + 02 (evolves the most heat of all 

the reactions. This is the reaction in detonation)

4. 2NH N0_ = N + 2N0 + 4H 0 4 3 2 2
5. 4NH N0_ 4 3 3N + 2N0 + 8H 0« Z Z
6. 8NH NO = 5N + 4N0 + 2N0 + 16H.0o Z Z Z

7. 5NH NO = 4N + 2HN0, + 9H.04 o Z 3 Z

8 . 4NH4N03 = 2NH3 + N2 + NO + 3N02 + 5H20 (endothermic)

Grades: Chemically pure (crystalline and granular)

Technical (granular — 98 to 100 percent pure)

Fertilizer or conditioned (93 to 96 percent containing 32.5 

to 33.5 percent nitrogen)

B. METHODS OF PRODUCING AMMONIUM NITRATE

In general, there are 4 methods o f making ammonium nitrate. Three 

of the methods are shown on the flow diagram, Figure 1. From the top to 

bottom, the products are from the prilling, continuous vacuum crystalli­

zation, and Stengel processes- A fourth method, known as the grainer or 

high-pan process, is not used to any great extent in the fertilizer in­

dustry (Faith, et al. 1957). Since this investigation deals with a pro­

duct from a particular manufacturing process, that of prilling, this will 

be examined more closely.

The typical fertilizer grade prill is produced by spraying molten AN 

with 4 to 5 percent moisture in a tower through a countercurrent flow of 

cool air (Ross, et al# 1945; Sauchelli, 1960). Liquid droplets congeal in 

their fall to form sphere-shaped particles of a size dependent upon the 

characteristics of the spray nozzles. The regular porous fertilizer grade 

AN prill is in the 8/20-mesh size range, or approximately 0.033 to 0.094 

inches in diameter. As these congealed granules reach the bottom of the
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tower, they are collected in a hopper and are then conveyed on a belt to 

the drying equipment» When the 4 to 5 percent moisture is removed, a por­

ous, roughly spherical particle resultsa

In the manufacture of dense prills, the process is changed to provide 

for the removal of moisture from the ammonium nitrate melt before entering 

the prilling tower* The result is a dense sphere of a certain size range 

depending upon the nozzles used in the spraying,, Typical dense prills are 

shown in Figure 2. It can be seen that they are spherical and possess a 

smooth, non-porous surface* Other changes are also made in the manufac­

ture of the dense prill which differentiate it from the regular product*

In the product examined in the present investigation, the AN is phase- 

stabilized in order to change the temperature of transition from the usual 

32.1°C0 Also, since the dense prills are non—caking, there is no clay or 

other coating added to the surface0

C. THE PHENOMENA OF DETONATION

Detonating explosives are those in which a chemical reaction is sus­

tained by a shock wave which passes at a very high speed through the ex­

plosive* This is in contrast to deflagrating explosives which react with 

the oxygen contained in their compositions and are relatively slow in 

action* The speed of the detonation shock wave, the pressures developed, 

the resultant gas composition and volume, and other quantities are calcu­

lable from the thermohydrodynamic theory described by Cook (1958b), Eyring, 

et al, (1948) and Taylor (1952)* A concise explanation of the principles 

for the solution of an explosive problem by the use of the thermohydro— 

dynamic theory has been written by Clark (1959) a

1* Ideal detonation* This is a detonation which proceeds at a rate 

which corresponds to the theoretical maximum velocity or the hydrodynamic
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Cross-Section of Dense Prill, L., and 

Regular Porous Prill, R. (About 200x)

AMMONIUM NITRATE PRILLS

FIGURE 2
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valueo It is a steady rate reached in a sufficiently large diameter charge 

and far enough away from the point cf initiation that further increase in 

either factor will not cause an increase in velocity., The charge diameter 

and travel distance necessary to fulfill the conditions are functions of 

the characteristics of the explosive in question and vary with explosive 

composition„ Such characteristics might be chemical composition, grain 

size (if granular), density, percent bore space, intimacy of mixing, con­

finement, or a number of other propertiesa

2, Non—ideal detonationo This refers to a steady velocity, attained 

in a charge of several diameters, that is lower than the ideal velocity.,

It is related to the rate of conversion of the explosive into its detona­

tion products with accompanying lateral heat and pressure losses« There 

are four well-known, theories of non—ideal detonation, known as the Nozzle 

(Jones, 1947), Curved Front (Eyring, et al, 1949), Geometrical Model 

(Cook, 1958b), and Variable Reaction Zone Length (Hino, 1959) theories,,

The various theories have been applied to AN—fuel oil mixtures,, without 

any particular success (Yancik, 1960b) „

Do SENSITIVITY AND THE INITIATION OF DETONATION

The methods of initiation and transmission of an explosive wave are 

not well known, although there have been many theories advanced on the 

subject„ All agree on the necessity of the production of heat at the 

wave fronts In the case of AN, it is proposed by Anderson, et̂  al, (1958) 

that heat first liquifies, then vaporizes the material into gaseous ammo­

nia and nitric acid.

The following are possible mechanisms for initiation in an explosive 

material (Bowden, et al, 1956)s
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1. Heating the explosive material to ignition temperature,

2. Adiabatic heating of the included gas spaces.

3. Formation of frictional hot spots

a, on confining surfaces, 

b« on grit particles.

c, between crystals of the explosive itself.

4. Viscous heating at high rates of shear.

5. Plastic deformation of the sharp point of a crystal.

6. Mutual reinforcement of gentle shock waves.

7. Ultrasonic vibrations*

8. Light of sufficient intensity.

9. Electrical discharge.

Experiments by various groups have shown the preceding mechanisms 

to be effective* Even in liquids it has been shown that initiation be­

gins with heat produced in highly compressed air bubbles.

Cook (1958b) explains initiation of detonation as a heat-balance 

problem. Since explosive decompositions are exothermic by nature and 

create gaseous products, they tend to produce high pressure gradients 

and thereby intense shock waves. If the temperature produced in th* shock 

front is high enough, detonation results.

In a granular explosive it is believed that some form of grain burn­

ing or surface decomposition occurs. The idea has been advanced that each 

contact point between grains could be a center of production of heat 

(Eyring, at al, 1948). Or, grains may be uniformly heated to ignition tem­

perature over all or part of their surface by the impact of streaming 

particles ahead of the detonation wave front. The fact that sensitivity 

increases with an increase in free surfaces within the explosive is 

significant in that it shows that some form of surface ignition is in
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operation. In propellant studies it has been found that cracked or other­
wise defective grains are very likely to detonate rather than deflagrate. 

In the same studies it was found that whether pores were connected or non- 

connected was significant to sensitivity, the material possessing connect­

ed pore space being much more likely to detonate (Amster, et al, 1960).

For very small grains, where the ratio of surface area to volume is 

high, the percent of the surface ignited of each grain can be much lower 

than with larger grains to achieve the same sensitivity. It is found 

that the finer the grain size, the greater the sensitivity (Clark, et al, 

1961b).

E. PREVIOUS RESEARCH ON PRILLED AN-FUEL MIXTURES

A considerable amount of research, both of practical and theoreti­

cal nature, has been done on regular porous prilp.-fuel oil mixtures. Nu­

merous articles have been written in the technical journals concerning 

field experimentation, references to which may be found in the bibliog­

raphy. The various symposia on mining research held at the Missouri 

School of Mines in recent years have contributed greatly to the litera­

ture on these mixtures. References to these papers may also be found in 

the bibliography.

Since 1957 the Missouri School of Mines has been actively engaged 

in research on AN-fuel mixtures. This research has been financially sup­

ported by the Monsanto Chemical Company of St. Louis, Missouri. Blasting 

is done at a testing area at nearby Fort Leonard Wood. The results of 

this program have been reported in the Ph.D. dissertation by Yancik 

(1960b), and the Master's theses by Kohler (1959) and Warga Dalem (1958). 

The following summary is compiled from these sources.
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The explosive properties of ammonium nitrate-fuel blasting agents 

have been investigated by measurement of detonation velocity and sensi­

tivity. Investigations were carried out on various mixtures of AN-fuel 

and certain parameters held constant while others were changed. Some ex­

amples of the parameters investigated are charge diameter, type and per­

cent of fuel, charge density, particle size, type of confinement, percent 

moisture, and percent inert ingredients* It was found that regular prill­

ed AN and no* 2 fuel oil, generally known as FO, had certain advantages 

over other types or forms of AN or fuels „ These advantages were (1) low 

cost, (2) stability, (3} homogeneity, (4) relatively high energy yield,

(5) practical level of sensitivity, and (6} availability and safetya

It was found that with porous prills, positive mixing cf the AN and 

fuel oil could increase the detonation velocity as much as 800 feet per 

second. Maximum efficiency and sensitivity were achieved when the mate­

rial was oxygen balanced, that is, containing about 5*5 percent by weight 

of fuel oil* Too little oil was found to be more detrimental than too 

much.

With respect to charge diameter and confinement, it was found that 

a steel casing gave a detonation velocity about 2000 feet per second high­

er than a clay charge casing of equal massc The steel casing, in fact, 

approximated a borehole in solid, hard rock* The detonation velocity of 

the balanced mixtures increased with charge diameter, but even at an 8- 

inch confined diameter and 10-inch unconfined diameter the velocity was 

still more than 1500 feet per second below the ideal rate* The optimum 

diameter extrapolated from velocity-diameter curves was about 18 inches 

for steel confined charges, and 60 to 100 inches for those that were un- 

confined. Tests which allowed free air space to remain in loading the 

container showed a considerable decrease in detonation velocity., The

13
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diameter below which detonation cannot be initiated (the critical diam­

eter) was found to be !-§- inches confined and 4 inches unconfined„ Deto­

nation velocity was found to increase almost linearly with increase in 

density, if all other variables were held constant*

With the regular prilled AN-fuel oil mixtures, a reduction in par­

ticle size was found to increase both detonation velocity and sensitivity., 

Inert coatings, by holding oil to the grain surface more effectively, in­

fluenced an increase in the detonation velocity although decreasing the 

sensitivityo Organic coatings, however, greatly sensitized the material*

Repeated cycling through the 32*1 degrees Centigrade transition 

point was found to cause regular porous AN prills to become more sensi­

tive to initiation. An increase in water content was found to decrease 

the detonation velocity, but did not significantly affect sensitivity* 

Beyond 8 to 10 percent water, however, detonation was impossible.

The porous structure of regular AN prills was believed to be the 

primary factor contributing to the excellent explosive properties* Ap­

parently the pores not only allow fuel oil to more intimately contact the 

AN, but also serve as hot spots and therefore act as centers of initiation 

in each prill*

Research with dense ammonium nitrate prills has not been so exten­

sive as with the porous variety* The total available literature consists 

of two papers by Clark, et al, (1961a, 1961b), and a chapter in the dis­

sertation by Yancik (1960b)*

Yancik based his conclusions on the investigation of 33 dense micro- 

prilled (size less than 20 mesh) products produced by varying the nozzle 

sizes used in the prilling tower* It was found that the explosive prop­

erties were controlled by the particle size distribution, which effect
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was attributed to the influence of the varying number of grain contact 

points. The pouring density in a 6-inch diameter pipe was found to be 

1.08 to 1.10 grams per cubic centimeter, and the detonation velocity to 

be 17,500 feet per second, or about 4000 feet per second higher than regu­

lar prilled AN under similar conditions0 At larger than 8-inch confined 

charge, the dense microprilled mixture was found to behave as an ideal 

explosive. As with regular porous prills, sensitivity varied with oil 

content. However, the dense variety reached maximum sensitivity at one 

percent fuel oil. Confinement had the same effect as with porous prills, 

that is, the detonation velocity was higher in confined than in unconfined 

charges.

Clark related the variations in detonation velocity to the percent­

age of AN consumed in the reaction zone. By relating the particle size 

distributions of the 33 dense microprilled products listed in Yancik's 

thesis to the surface burning theory with constant reaction rate, he ar­

rived at the empirical relation

D = 6600 N 0.21

where D is the measured detonation velocity, and N is the percent of AN 

consumed in the reaction zone. This equation is a variation of that of 

Cook (1958b) for non-ideal detonation, which in the same form is

D = 1700 N 0,50

Clark/s equation predicts the detonation velocities found in AN

more accurately than does the equation by Cook
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EXPERIMENTAL EQUIPMENT AND PROCEDURES

A. DETONATION VELOCITY MEASUREMENTS

Since the velocity of detonation is the most readily measured per­

formance parameter of an explosive which can be relaced to the theoretical 

calculations, this was measured for the dense microprilled AN-fuel oil 

mixtures. The equipment used is shown in Figures 3 and 4a, and consists 

of the following:

1. A 12-conductor cable with corks attached to the end of each wire. 

These are placed in accurately spaced holes in the charge container.

2. Pin mixer and protective box.

3. Cordin pin oscillograph and modified Tektronix 533 oscilloscope.

4. Hewlett-Packard oscilloscope camera with Polaroid back.

The operation proceeds as follows:

1. The explosive mixture to be measured is placed in the container 

(iron pipe) and properly primed.

2. Corks are introduced into their proper holes.

3. A high electrical potential is placed on the wires held in place 

by the corks.

4. The oscilloscope camera shutter is opened.

5. The primer and explosive charge is detonated, following which:

a. The voltage on the upper cork wire crosses to ground 

via the ionization in the reaction zone, beginning a 

saw-tooth waveform on the oscilloscope. Simultaneously, 

the pin oscillograph places timing marks every 2 micro­

seconds along the trace.

CHAPTER III
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b. As the ionization travels on, it allows the voltage 

to flow from cork wire no, 2 to ground, creating a 

blip on the oscilloscope trace.

c. Step "b" is repeated for each cork wire until the

charge has completely detonated.

6. The oscilloscope camera lens is closed and the film developed.

A typi cal trace is shown in Figure 4b. A more complete description 

of equipment for the measurement of detonation velocity may be found 

in the- thesis by Kohler (1959).

B. SENSITIVITY MEASUREMENTS

As stated in Section D of Chapter II, sensitivity is a parameter that 

is very difficult to predict. However, it is relatively simple to measure 

and the system used with explosives is usually some sort of a "go, no-go" 

type. For this investigation 3-inch diameter pipe in either 2-foot or 

1-foot lengths was used to confine the material to be tested.. In the 

case of pipe of 1-foot length, 6 inch squares of l/8-inch steel were used 

as witness plates beneath the base of each charge to insure evidence of 

detonation or non-detonation. With 2-foot pipe, witness plates were un­

necessary since it was apparent from the crater when detonation took 

place. The most convenient primer to use in small amounts is the common 

blasting cap. For this study special no. 6 caps were used which had only 

the main charge present in the shell and had no ignition mixture or leg 

wires. Primers of any strength could then be made by simply tying a spe­

cific number of special caps to a regular electric blasting cap. Thus, 

figures for sensitivity are stated as the "number of caps required for 

detonation". In extremely insensitive mixtures where the sensitivity is 

over 50 caps, some other means of priming must be used to achieve
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Charge container with cork pins and dynamite

primer.

Pin mixer head and protective box.

DETONATION VELOCITY MEASUREMENT EQUIPMENT

FIGURE 3
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a. Pin oscillograph, oscilloscope, and camera.

b. A typical oscilloscope trace record. 

DETONATION VELOCITY MEASUREMENT EQUIPMENT

FIGURE 4
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detonation.

Figure 5 shows a 1—foot sensitivity pipe and various witness plates.
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Sensitivity Test Pipe 

and Witness Plate

Witness Plates

Detonation results, top to bottom: 

none, partial, and complete.

SENSITIVITY TEST EQUIPMENT

FIGURE 5
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CHAPTER IV

DISCUSSION OF RESULTS

A. INVESTIGATION OF THE PHYSICAL PROPERTIES OF DENSE PRILLS

1. Determination of density. In order to determine the density of 

dense prilled ammonium nitrate a method of actual measurement of the in­

dividual spherical particles was utilized. A binocular microscope with a 

calibrated eyepiece was used for diameter measurements. The total volume 

for a large number of prills was then calculated, and the entire sample 

weighed on an analytical balance.

The material investigated was the Monsanto dense prilled product 

designated as "E-2" which has a size range of 8/20 mesh, or diameters of 

2.38 to 0.84 millimeters. This product was chosen because its compara­

tively large size made it possible to obtain a sample of reasonable weight 

without the problem of measuring an extremely large number of prills. 

Samples were taken from various bags of material.

To determine if moisture drawn from the air was adding to the weight, 

a sample was heated at 101 degrees Centigrade in a constant temperature 

oven, then re-weighed after varying periods of time. It was found that 

the maximum weight loss was approximately 2̂ - percent. Upon cooling for 

1 hour, the loss was regained.

The average density of the dense prill of the size investigated was 

found to be 1.52 grams per cubic centimeter. A method of liquid displace­

ment resulted in an average density of approximately 1.67 grams per cubic 

centimeter. However, with a liquid displacement method, any absorption 

by the prill will introduce an error in the determination by giving an ap­

parently larger volume of voids. The calculations based on the results
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of such a test will then give a higher density to the AN prills. For this 

investigation the value of lc52 grains per cubic centimeter was accepted.

2. Determination of theoretical bulk density. Dense prills, being 

spherical, will fill a charge container in a manner that should follow 

the various spherical packing arrangements. When the density of the 

prills and the packirg density are known, the packing arrangement can be 

determined.

The possible packing arrangements of spherical particles are well 

known, as long as only one particle size is being considered. With a 

mixture of many sizes, however, it becomes extremely difficult to deter­

mine what characteristics the packing will have. According to Dalla- 

Valle (1943, p. 5);

"Packings are inherently very complex and there is 
still much to be learned about them. For example, we may 
pose the problem of how to select the proper sizes and the 
correct proportions of a given material so that the larger 
voids are filled with smaller particles, and these voids 
in turn filled with still smaller particles, and so on.
Theoretically we should be able to obtain a very low per­
centage of voids in this way; nevertheless, both theoret­
ically and practically this problem remains unsolved."

With spheres, the percentage of voids ranges from a maximum of 47.6

with a cubic packing to a minimum of 26.0 with a rhombohedral packing.

These percentages are true only for spheres of uniform size. Figure 6

shows spheres in these characteristic packing arrangements.

By knowing the density of the individual prills, the maximum bulk

density attainable may be calculated as follows: if a bulk density of

1.00, for example, is to be realized with 1.00 gram of AN-FO, the volume

filled must be 1,00 cubic centimeters. However, the AN prills were

found to have a density of about 1.52 grams per cubic centimeter, which

should result in 1.00 cubic centimeter of material weighing 1.58 grams,
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Cubic

Rhombohedral

SPHERE PACKING ARRANGEMENTS

FIGURE 6
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including fuel oil weight. Therefore, there must be

1.00 - x 100, or 36„7 percent voids present.1.58

Percent void was calculated for other bulk densities, and the results 

plotted as shown on Figure 7. It is apparent from the figure that the 

maximum density theoretically possible with a uniform size should be 1.17 

grams per cubic centimeter,, The variation in size of each screen frac­

tion as shown in Table I, plus the improbability of perfect rhombohedral 

packing, will cause variation in the maximum bulk density attainable.

3. Determination of the specific surface of dense prills. Specific 

surface, S, defined as the total surface of a unit weight of material, de­

pends only upon the average diameter, d, and the density,p , when referring 

to spherical particles„ The relationship is as follows?

Since dense ammorium nitrate prills have a spherical shape, and in 

the preceding section the determination of density was discussed, we are 

justified in calculating the specific surface of the various size frac­

tions encountered in this study. Table I and Figure 8 show the results 

of these calculations.

Bo DETONATION VELOCITY TESTS

The detonation velocity of the dense prilled ammonium nitrate de­

scribed in the preceding sections was investigated by the methods described 

in Chapter III. The Monsanto Chemical Company, supplier of the AN, desig­

nates the prills as "E-2" or "E-3" depending upon the size distribution.

The number of tests was limited due to the difficulty in acquiring 

dense prilled material in the required size ranges. Grinding of dense 

prills would have provided the correct sizes, but the particles would no
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DENSITY WITH UNIFORMLY SIZED PRILLS

FIGURE 7
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TABLE I

CHARACTERISTICS OF SIZE FRACTIONS TESTED

Mesh Size 
(USSS)

Diameter
(microns)

Average Dia0 
(microns)

U;

Percent Size 
Variation

(2)
Specific 
Surface 
(sq cm/gm)

8/20 '2380-840 1520 101.3 26.0
12/20 1680-840 1260 66o7 31.3

20/30 840-590 715 35.0 55.2
30/40 590-420 505 33.7 78.1

40/50 420-297 359 3403 110
50/60 297-250 274 17.2 144

60/80 250-177 213 34.3 155

80/140 177-105 141 51.1 280
140/200 105-74 90 34.4 439

•*■■200 74- 37 200 1067

(1} Average diameter is a simple arithmetic mean of diameter limits except

in the case of 8/20 where it is the statistical result from a screen ana-

lysiso

(23 Determ ined by relation of particle sizes

large — snail x 10O 
average
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longer have been spherical in shape. Again because of a lack of material 

in quantity, each fraction was tested only at the density achieved by 

rapping the velocity test pipe gently a few times after filling.

Regardless of the testing density, the detonation velocity may be 

related to that at any other density by the equation (Cook, 1958b),

D* a + M * (p i - p)

where is the detonation velocity at the density p and M* is the slope 

of the ideal velocity-density curve.. The density Px is that to which it 

is desired to correct the detonation velocity. The equation is then 

solved for D*„ This straight line relationship holds true in the density 

ranges of this study□ All detonation velocities were corrected to *a 

density of 1.0 grams per cubic centimeter for comparison with one another.

In order to initiate the mixtures, it was found that a primer con­

sisting of 4-half sticks of 1-J- by 8 inch, 60-percent ammonia dynamite 

was sufficient for initiation of all but the larger sizes of prills.

With the 8/20 and 12/20 mesh fractions, a primer of greater strength such 

as the military composition C-4 was necessary for dependable initiation.

The field test data are listed in the Appendix. Correction was made 

to a density of 1.0 grams per cubic centimeter and the results shown in 

Table II. A digital computer was used to fit a curve to the corrected 

data by the method of least squares. The result was that a third degree 

polynomial equation gave the best fit. The equation is as follows;

D = 18.2 x 103 - 13.4d + 18.0 x 10~3d2 - 87.7 x 10"7d3 

where D represents the detonation velocity in feet per second, and d rep­

resents the prill diameter in microns. If the particles in the 8/20 mesh 

range are not considered, the points may be represented by the straight

line,
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TABLE II

CORRECTED DETONATION VELOCITY TEST RESULTS 
density = 1.0 qm/cc

Mesh Size 
CUSSS)

Average 
Diameter 
(microns)

Detonation 
Velocity 
(ft/sec)

8/20 1520 8,520
n n 8,510
rr /f 8,760

12/20 1260 12,700
i t n 12,380

20/30 715 14,420

30/40 505 14,880
n n 14,490
n n 14,160

40/50 359 15,700
// // 15,400

50/60 274 16,220

60/80 213 16,210

n // 16,170

80/140 141 16,460

n n 16,540

140/200 90 16,850
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These curves and the corrected experimental points are plotted on Figure 9.

Most investigators agree with Eyring, et al, (1949) that detonation 

in granular explosives begins at the grain surface and burns toward the 

center in a layer by layer manner. Using this assumption, and also as­

suming the reaction zone to be of constant length if the diameter of the 

charge container is unaltered, then a relation should exist between the 

grain size of the explosive and the percent of material consumed in the 

reaction zone.

This relation has been considered by Clark, et_ al, (1961b) with ref­

erence to polymodular dense prilled AN-FO mixtures, and Cook (1958b) with 

reference to most non-ideal explosives. The empirical equations, con­

sidering the same velocity at 100 percent agent consumed, are as follows:

Clarks D = 6600 N0-21

Cook: D = 1736 N0,50

In each equation, D is the detonation velocity in feet per second 

and N is the percent of the agent consumed in the reaction zone. Cook 

(1958a) states that although his equation is based on granular explosives 

in which the grains are homogeneous in composition, it conforms to the 

binary AN-FO systems because of the nearly uniform distribution of oil 

throughout the AN prills. This is approximately true in reference to 

regular porous prilled AN, but does not apply to the dense prilled pro­

duct. It is evident from visual examination of any large-grained, dense 

AN-FO mixture that the oil is not distributed throughout the prill, but 

is concentrated on the surface. With smaller prills this concentration 

upon the prill surface is not as apparent, due to the much greater sur­

face area available for distribution of the oil.

D = 16,900 - 3.60d
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In order to determine the extent to which either Clarkes or Cook's 

equation could be correlated with the experimental data, the percent con­

sumed, N, was calculated for each size fraction tested. It was assumed 

that ignition was initiated over the complete surface of the grain and 

combustion proceeded toward the center at a constant rate. Figure 10 

shows the results of calculations considering complete consumption of a 

110-micron diameter grain in the reaction zone as compared with the curves 

of Clark and Cook. It can be seen that the equation by Clark predicts 

more closely the actual detonation velocities found with the dense prilled 

AN-FO mixtures. The points falling near the 20 percent axis represent the 

large particles in the size fraction 8/20 mesh.

Possible factors influencing the decrease in detonation velocity with 

increase in size between the 1260 and 1520-micron diameter particles were 

examined. It was considered that since grain burning was taking place 

from the surface inward, and since fuel oil remains on the surface of the 

grain after mixing, there might be an extremely oxygen-negative condition 

decreasing the detonation velocity of the large particles. Since the 

amount of AN consumed is calculated to be approximately 20 percent with 

the 8/20 mesh size, the oxygen balance that results with complete fuel 

oil consumption is minus 4.15 gram atoms per 100 grams of mixture. The 

amount consumed of the 12/20 mesh size prill was calculated to be 24 per­

cent; for this size the oxygen balance is minus 3.49. The next smaller 

size had a calculated amount consumed of 39 percent, giving an oxygen 

balance of only minus 1.90 gram atoms per 100 grams of AN-FO. Another 

factor which may influence detonation velocity within the size range of 

8/20 to 12/20 mesh is that the critical diameter of the AN-FO is closely 

approaching the 3—inch pipe diameter. This, combined with the highly
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negative oxygen balance, could cause the observed lowering of the detona­

tion velocityo Figure 11 shows how the calculated oxygen balance becomes 

more negative as the percent of explosive consumed decreases»

Ideal curves relating detonation velocity to density and fuel oil 

content may be found in the Appendix 0 The program used for the calcu­

lation of these parameters was written primarily for near oxygen balanced 

conditions: therefore, in the fuel oil content curve there may be some 

error toward the more negative end of the oxygen balance axis.

C. SENSITIVITY TESTS

In order to determine the sensitivity of the various size fractions 

of dense prills, the procedure described in Chapter III was utilized.

For determination of relative sensitivity it is desirable that the load­

ing density of all fractions tested should be the same, or very nearly 

soD However, as stated previously, the smaller sizes have a very low 

loading density. It was felt that it would be more undesirable to press- 

pack the material in order to achieve a higher density, than it would be 

to simply test at the density attained by uniform vibration of each size. 

With the 30/40-mesh size, this procedure resulted in a density of over 

1.0 gram per cubic centimeter. Table III shows the results of sensitivity 

determinations on the various size fractions.

Relationships between the experimental data and physical parameters 

of the individual prill sizes were examined. It was found that there 

was a definite relationship between the number of prills contacting the 

primer for each size fraction. For example, the number of prills of size 

140/200 mesh that contact the surface of the minimum primer (1 cap) is 

nearly the same as the number of 20/30 mesh prills contacting the minimum 

primer (40 caps) for that size. The intermediate sizes also followed this
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TABLE III

SENSITIVITY TEST MEASUREMENTS

Size, USSS Mesh Density, gm/cc Minimum Primer*

8/20 1.04 over 50 caps

12/20 ooD»-1 over 50 caps

20/30 ooo1—1 40 caps
30/40 In 07 35 "
40/50 1.01 10 "
50/60 o □ CO 8 "
60/80 0.86 3 "

80/140 0.83 2 "

140/200 0 o71 1 "
-200 0.73 2 "

* 3 inch diameter iron pipe.
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relationship. Figure 12 shows this relationship and the cap sensitivity. 

For calculation of the number of prills contacting the surface, the prills 

were considered to be in the most open packing and the cap bundle was con­

sidered to be without voids. These assumptions are believed to be valid, 

since only a relative comparison was desired. Each cap, for calculation, 

was considered to occupy an area of 0.067 square inches.

The upper and lower limits for the number of prills contacting the 

primer on Figure 12 were arrived at by considering the sensitivity range 

to be ^5 caps for the more insensitive mixtures, -2 caps for intermediate 

sensitivities, and il cap for the most sensitive mixtures. The limits 

for the one—cap sensitive mixture were not plotted since the lower limit 

would have been zero and the upper limit off the graph.

The most reasonable explanation for the relationship that was found 

appears to be that the contact points between the primer and the prills 

act as hot-spots in accordance with the theories of Eyring, et al, (1949), 

Bowden and Yoffe (1952), and others. The relative amount of surface area 

exposed to the heat from the primer appears to have only secondary effect 

upon the sensitivity»

The size fraction minus 200 mesh is not plotted on the graph because 

no detailed particle size distribution was made on that material. The 

reason for the anomalous sensitivity found with this fraction was not

discovered.
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CHAPTER V 

CONCLUSIONS

With dense ammonium nitrate prills it was possible to predict the 
maximum loading density that could be attained by close packing with the 

larger sizes. Dense prills were not in sufficient supply, however, to 

allow testing of the explosive properties of each size fraction at vari­

ous loading densities. It is believed that with the small prills there 

might be such a high ratio of surface friction to mass that they are not 

readily rearranged into a closer packing after pouring.

The detonation velocity results with the various size fractions 

show that Clarkes equation, derived from a study of polymodular distri­

butions of dense prilled AN, predicts closely the actual behavior of the 
dense prilled mixtures with discrete particle size fractions. In the 
largest size tested (8/20 mesh), which is far from the range with which 

Clark worked, his equation does not apply in the 3-inch diameter pipe. 
However, these fractions, being so difficult to initiate, would seem to 

have little application as blasting agents. Part of the variation in 
velocity might be due to a very oxygen-negative condition existing in the 

percent of the blasting agent consumed in the reaction zone.
Sensitivity tests showed the expected general decrease in sensitivity 

with increase in size. The minimum primer ranged from 1 cap with the 

140/200 mesh size to about 400 grams of a commercial cast primer or the 

plastic military composition C—4 with the 8/20 mesh size. A correlation 

was found in the case of blasting cap primers between the number of cal­

culated contact points between the blasting agent and the minimum primer. 
Approximately 4000 to 5000 contact points exist regardless of the size in
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question, up to the 20/30-mesh size fraction. It may be found that with 

polymodular AN-FO mixtures one could predict the sensitivity by estimating 

the number of prills in a unit plane section and relating this to the cap 

cross sectional area. No correlation was found between specific surface 

of prills and the sensitivity or detonation velocity.
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TABLE IV
DETONATION VELOCITY FIELD TEST DATA

Mesh Size 
(USSS)

Loading Density 
(gm/cc)

Average Dia. 
(microns)

Primer Detonation
Velocity*
(ft/sec)

8/20 1.04 1520 (a) 9,020
r r 1.04 // (b) 9,260
r r 1.06 r r (c) 9,260

12/20 1.01 1260 (d) 12,820
rr 1.04 // n 12,880

20/30 0.97 715 (®) 14,040

30/40 1.03 505 n 15,260
i i 1.04 // n 15,440
i i 1.09 r r #/ 15,280

40/50 0.89 359 n 14,330
// 0.90 r r n 14,150

50/60 0.91 274 n 15,090

60/80 0.88 213 n 14,710
// 0.88 r r r r 14,670

80/140 0.85 141 r r 14,580
n 0.85 r r r r 14,670

140/200 0.72 90 r r 13,350

* 3 inch diameter iron pipe,

(a) Propellex #151

(b) 1200 grams composition C-4

(c) 1560 grams composition C—4

(d) 780 grams composition C—4

(e) 4-half sticks 60 percent ammonia dynamite
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TABLE V

SENSITIVITY FIELD TEST DATA 
(94/6 AN-FO, 3-inch dia. iron pipe)

Mesh Size Loading Density Detonation*
(USSS) (gm/cc) Complete Partial None

8/20 1.04 Propellex 151 
1160 gm C-4 
1560 gm C-4 
1200 gm C-4

Propellex
151
Titan 150

40, 50, 50 
21.5 gm PETN 
4—J- sticks 
60% Ammonia 
dynamite- 
(3 times)

12/20 1.00 780 gm C-4 
(2 times)

50, 50

20/30 1.00 cn o o o 30

30/40 1.07 40, 30 30, 30, 25 
35

/

40/50 1.01 10 10, 8 6

50/60 0.94 8 5

60/80 0.86 4, 3, 2 2

80/140 0.83 2, 2, 1 1 1

140/200 0.71 1, 1

"200 0.73 2 1

* Unless otherwise designated, numbers in these 3 columns refer to the 
number of blasting caps used.

Propellex 151 is a cast primer, 2 inches thick by 3 inches in diameter, 
manufactured by the Propellex Chemical Division of the Chromalloy 
Corporation, Edwardsville, Illinois.

Titan 150 is a cast primer of 150 grams weight, produced by the Hercules 
Powder Company, Wilmington, Delaware.
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